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Abstract. Some of the interesting magnetic properties of ferrous niobate have recently been
attributed to the orbital angular momentum of the iron atom. In the present work, the spin
and orbital components of the magnetic moment are shown to make distinctive appearances
in the resonant contribution to the scattering length for the electrostatic scattering of x-rays,
from which the dichroic signals in the attenuation coefficient and the Bragg diffraction cross-
section are derived. Quantitative predictions are made for the circular and linear dichroic signals
of ferrous atoms in FeNb2O6, and these are compared to the corresponding signals predicted
for free ferrous atoms. In all cases, the analytic expressions for the dichroic signal possess a
relatively simple structure.

1. Introduction

A recent analysis of a large body of empirical data on the magnetic properties of ferrous
niobate, FeNb2O6, has led to the view that the ferrous atom (3d6) has a magnetic moment
which is far from being spatially isotropic. One set of measures of the degree of anisotropy
in the moment are departures of the principal components of its gyromagnetic factor from
the value of 2.0 achieved by a free electron. The latter value is obtained for all of the
principal components of the gyromagnetic factor of a ferric atom (3d5) with the orbital
singlet state6S. In stark contrast to a ferric atom, the components of the gyromagnetic
factor of the ferrous atom in FeNb2O6 are predicted by Heidet al (1996) to begx = 2.0,
gy = 2.37 andg0 = 3.09. The anisotropy in the moment of the ferrous atom is attributed
to the perturbation of the orbital of its extra electron, relative to the spherically symmetric
half-filled shell of a ferric atom, by the (ligand) crystal-field potential. One anticipates that
the same physical mechanism creates significant magnetoelastic effects, and possibly even
a hybridization of the lattice modes of vibration with the spin-wave excitations, which has
previously been observed in FeF2 and FeCl2 (Lovesey and Loveluck 1977). The evidence
offered by Heidet al (1996), to the effect that the orbital magnetic moment on the ferrous
atom is significantly different from zero and anisotropic, is a new development in accounts
of the magnetic properties of FeNb2O6.

Emerging experimental techniques that use beams of x-rays from accelerator sources
might be quite useful in further studies of FeNb2O6, and similar magnetic materials. In
particular, we have in mind two techniques, which utilize the L-absorption edges of the iron
atom to probe its magnetic state, because they have the scope to give separate access to
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the spin and orbital contributions of the moment and they are now relatively easy to apply.
One technique is based on the dichroic effect in the attenuation coefficient and the second
is resonance-enhanced Bragg diffraction. A theoretical framework for the two techniques
can be formulated in terms of the resonant contribution to the scattering length for the
electrostatic scattering of x-rays.

In this paper, we provide theoretical results pertaining to FeNb2O6 that enable one to
predict its dichroic signals and scattering cross-section. These probes of magnetism rely on
the electric dipole absorption event, in which a hole from the partially filled 3d valence shell
is transferred to an initially full 2p core orbital. The energies of the L2 and L3 absorption
edges, separated by several eV, are in the region of 0.71 keV, and this energy corresponds
to an x-ray wavelength=17.5 Å.

Below a temperature of 4.9 K, FeNb2O6 displays long-range antiferromagnetic order
with a (non-collinear and canted) magnetic configurationFxCz (the notation used here is
defined, for example, by Bertaut 1963). For this magnetic phase, we show that because
there is no net magnetic moment the dichroic signal for circular polarization in the primary
beam of x-rays is zero. The signal is non-zero for a new phase induced by the application
of a magnetic field, of about 1 T, in which, under the influence of the field, the moments
reorientate and produce a net moment for the sample, in the direction of the field. (The
magnitude of the critical magnetic field at which the phase transition takes place, and the
magnitude of the induced magnetic moment, depend on the direction of the field relative
to the axes of the crystal structure.) On the other hand, the dichroic signal for linear
polarization in the primary beam of x-rays is found to be non-zero for both of the magnetic
phases that we have mentioned. Above the ordering temperature and in the absence of an
applied magnetic field the circular dichroic signal is zero, and the linear dichroic signal is
non-zero. The dependence of the cross-section for Bragg diffraction by FeNb2O6 on the
temperature and an applied magnetic field is readily deduced from what we have already
said about the dependence of the dichroic signals on these variables.

In the next section we very briefly introduce the formulation of the absorption and
resonance-enhanced scattering of x-rays used in the subsequent work, which is due to
Lovesey and Balcar (1996, 1997). The main feature of the formulation is the reduction of
the resonant component of the scattering length to an expression in terms of standard atomic
variables, at the expense of having to mimic the full energy spectrum for dipole-allowed
transitions, from the equilibrium state of the ferrous atom to the plethora of (virtual) quasi-
discrete intermediate states, by just two components which are identified by the two possible
values of the total angular momentum of the core state that appears in the intermediate
states. As with any formulation of the scattering length that one might choose to employ, it
is required to possess a good description of the magnetic atom in question in the form of a
wave function for its valence shell. The construction of the wave function for a ferrous atom
in FeNb2O6, which is based on the model of the material proposed by Heidet al (1996),
is the task described in section 3. Our version of the scattering length for the resonant
scattering of x-rays is found in section 4, and section 5 is given over to a discussion of the
dichroic signals derived from it. The corresponding signals for a free ferrous atom (5D4)
are listed in section 6, for both completeness and also as a frame of reference in which to
assess the influence of the crystal-field potential in the dichroic signals for FeNb2O6 given
in section 5. A brief discussion of our findings follows immediately, in section 7.
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2. Scattering length

In our work we use for the theory of absorption and resonance-enhanced scattering of x-
rays the formulation put forward by Lovesey and Balcar (1996, 1997); hereafter, these two
papers are referred to as I and III (paper II in the series treats an E2 absorption event, which
is not of immediate interest). It is not our aim in this section to give anything bordering
on a review of the formulation. Rather, we give the minimum of the information which
appears necessary to enable the reader to follow the subsequent discussions.

The primary radiation has an energyE = 2πh̄c/λ, wave vectorq and a polarization
vectorε. The corresponding quantities for the secondary radiation are distinguished by a
prime. It is understood that the energy of the primary radiation is tuned close to a resonance
which is characterized by its mean energy,1, and the total angular momentum,J̄ , of the
state created by the hole transferred in the absorption event from the valence shell to a core
state. For 3d valence electrons and an electric dipole (E1) absorption event,J̄ = 3

2(L3) or
J̄ = 1

2(L2). The total decay width of a resonance is0.
Let the absorbing atoms be at positions in the crystal sample which are defined by vectors

{R}. Spatial coherence in the scattering process, e.g. the condition for Bragg diffraction,
arises from the phase factors exp(ik ·R) in which the scattering wave vectork = q − q′.

For E close to1, the mean value of the resonant contribution to the scattering length
is

〈f 〉 = −
(

2πe

λ

)2{
E −1+ i

2
0

}−1∑
R

exp{ik ·R−W(k)}〈Z(R)〉 (2.1)

where exp{−W(k)} is the Debye–Waller factor. The amplitude of the resonant process,
denoted by〈Z(R)〉, is a purely real quantity, and in the following work it is calculated
using an atomic model of the valence electrons in a ferrous atom found in ferrous niobate.
The amplitude factor depends on the magnetic properties of the crystal, the polarization
vectorsε andε′, and the square of the radial integral〈R〉 for an E1 absorption event.

The cross-section for Bragg diffraction is proportional to|〈f 〉|2. The attenuation
coefficient, and the dichroic signals, are derived from the imaginary part of〈f 〉 when
it is evaluated for a forward-scattering geometry and averaged with respect to states of
polarization in the primary beam. We will denote the corresponding amplitude by〈Z〉0.
The attenuation coefficient is then proportional toδ(E −1)〈Z〉0, where the delta function
for the energy is a good approximation when the energy0 is vanishingly small.

For a free atom, whose magnetic properties are specified by the three quantum numbers
SLJ , 〈Z〉 is equal to one diagonal matrix of a sum of three spherical tensor operators,
whose matrix elements are simple functions of Racah unit tensors. An example of this type
is briefly discussed in section 6. The situation is rarely appropriate for salts containing 3d
transition-metal atoms, since the crystal-field potential is a perturbation with an intermediate
strength and stronger than the spin–orbit interaction. In consequence, the ground-state wave
function of the transition-metal atom contains several atomic components, with coefficients
determined by the crystal-field potential and spin–orbit interaction, and the corresponding
amplitude factor is a sum of several matrix elements. Great simplification to the structure
of the amplitude factor arises when all of the atomic components in the wave function are
drawn from oneJ -manifold. A manifestation of the simplification is the option to use the
method of operator equivalents, which is standard practice in the interpretation of many
other experimental methods.
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3. The wave function of a ferrous atom

In the ordered magnetic state of FeNb2O6 there are two non-equivalent sites for the ferrous
atoms. We use local principal axes for the sites, in which they-axes are common to both
sites, and the twoz-axes enclose an angle 2φ. The ferrous magnetic moments lie in the
parallelx–z planes. Note that Heidet al (1996) refer to 90− φ as the canting angle. From
the theoretical analysis they obtain in the local principal axesgx = 2.0, gy = 2.37 and
g0 = 3.09.

The ground-state wave function of a ferrous atom which is subjected to a crystal-field
potential that possesses an octahedral symmetry can be constructed, to a good approximation,
from the three non-degenerate orbitals that span the05 space. Using a standard notation,
the three purely real, orthogonal and normalized orbitals are denoted by|xy〉, |yz〉 and|zx〉.
In terms of the orbital angular momentum states|L = 2,ML〉 = |ML〉 the three orbitals are
here taken to be

|xy〉 = − i√
2
(|2〉 − |−2〉)

|yz〉 = i√
2
(|1〉 + |−1〉) |zx〉 = − 1√

2
(|1〉 − |−1〉).

(3.1)

Following the analysis by Heidet al (1996), we shall assume that the ground state is
represented by|yz〉 and additions of|zx〉 and |xy〉 brought in by the action, within the05

space, of the spin–orbit interaction.
The spin–orbit interaction is treated as a linear perturbation on the state which is

described as a product of|yz〉 and the spin state|S = 2,M〉 = |M〉. A straightforward
calculation leads to a wave function for the ground state of a ferrous atom which is

|ψ,M〉 = |yz,M〉 − i

2
M(g0− 2)|zx,M〉 + i

2
(gy − 2)

∑
M ′
〈M ′|Sy |M〉|xy,M ′〉. (3.2)

In terms of the spin–orbit interaction parameter,λ, and the separations in energy of the
orbitals |zx〉 and |xy〉 from |yz〉 we have

g0− 2= −2λ/e(zx) (3.3a)

and

gy − 2= −2λ/e(xy). (3.3b)

Inserting in these formulae the values of the parameters derived by Heidet al (1996),
namely,λ = −99, e(zx) = 182 ande(xy) = 540, all in units of cm−1, one recovers forg0

andgy the values previously quoted by us. Of course,

〈ψ,M|Lz|ψ,M〉 = (g0− 2)〈ψ,M|Sz|ψ,M〉 (3.4a)

and, forα = x andy,

〈ψ,M + 1|Lα|ψ,M〉 = (gα − 2)〈ψ,M + 1|Sα|ψ,M〉. (3.4b)

In the light of these results, one can conclude that the wave function specified in (3.2) gives
a tolerable description of the model for a ferrous atom in FeNb2O6 developed by Heidet
al (1996).

In the next section, the wave function is used to calculate the amplitude factor which
appears in the mean value of the scattering length. For the case in hand, the mean value of
the amplitude factor is equal to its diagonal matrix element averaged over the degeneracy in
the spin magnetic quantum number,M. SinceSz|M〉 = M|M〉, the average overM gives
the average value ofSz and the average overM2 gives the average value ofS2

z .
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4. The amplitude factor

The amplitude factor in the scattering length is a sum of three terms that are labelled by the
rank,K, of a spherical-tensor operator. Thus, the matrix element of each term obeys the
Wigner–Eckart theorem for a tensor of rankK. When, as in the present case, one calculates
matrix elements in theSL-basis, since for 3d transition-metal atoms subject to a crystal field
this basis is more convenient to use than theSLJ -basis, for a givenK the Wigner–Eckart
theorem separately applies to the spin and orbital operators. The matrix elements of the spin
and orbital operators in the amplitude factor are coupled, via a Clebsch–Gordan coefficient,
to produce a matrix element of a tensor of rankK. The complete details of the formulation
are found in paper III, together with values of the Racah unit tensors for 3d6, 5D.

We have calculated the amplitude factor,〈Z〉, using the wave function for a ferrous
atom which is defined in (3.2). In the results of the calculation we have kept all terms in
the matrix elements except those which are quadratic in the departure of the gyromagnetic
factor from the spin-only value, and this level of approximation in the matrix elements
is consistent with the construction of the wave function. The amplitude factor for one of
the two non-equivalent magnetic sites is the sum of the following three terms, in which
J̄ = 1± 1

2:

(i) K = 0:

1

45
〈R〉2(ε′ · ε)

{
4(2J̄ + 1)± 1

2

[
(g0− 2)〈S2

z 〉 +
1

2
(gy − 2)(S(S + 1)− 〈S2

z 〉)
]}

(4.1)

(ii) K = 1:

i

15
〈R〉2(ε′ × ε)z〈Sz〉

{
1

4
(g0− 2)(2J̄ + 1)± 5

6

[
1− 3

20
(gy − 2)

]}
(4.2)

(iii) K = 2:

− 1

90
〈R〉2

{
(ε′ · ε− 3ε′xεx)(2J̄ + 1)±

[
1

2
(ε′ · ε− 3ε′yεy)(gy − 2)

× (S(S + 1)− 〈S2
z 〉)+ (ε′ · ε− 3ε′zεz)(g0− 2)〈S2

z 〉
]}
. (4.3)

In these expressions,〈Sz〉 and 〈S2
z 〉 are the thermal average values of the enclosed spin

operators. In the absence of a magnetic field,〈Sz〉 in FeNb2O6 decreases with increasing
temperature and vanishes at the Néel temperature. At zero temperature〈Sz〉 = S and
〈S2
z 〉 = S2 (these estimates do not include the zero-point fluctuations which exist in ordered

antiferromagnets). Well above the Néel temperature〈S2
z 〉 = S(S + 1)/3, and paper I

contains the leading-order correction to this result as a function of the ratio of the single-
site anisotropy constant to the temperature. The contributions to (4.1)–(4.3) made by the
spin moment of the ferrous atom are identified by setting to zero the orbital contributions,
and this is achieved by replacinggy andg0 by the spin-only value of 2.0.

Looking at (4.1) and (4.3), the two terms formed with tensors of an even rank, the
thermodynamic information in both terms appears as〈S2

z 〉. The terms also share the feature
for gy = g0 = 2.0, the spin-only gyromagnetic factor, that they are independent of the
thermodynamic properties of the ferrous atom. ForK = 0 the useful information in the
amplitude factor is in the part that has opposite signs at the L2 and L3 absorption edges.
The coefficient of 2̄J + 1 is exactly the same as we find for a free atom, and the appropriate
result is found in paper III. On the other hand, in the termK = 2 the coefficient of 2̄J + 1
reflects the spatial symmetry of the principal orbital in the ground-state wave function. The



4266 S W Lovesey and H Grimmer

coefficient in (4.3) is correct for the orbital|yz〉, of course, while if the principal orbital is
|zx〉 or |xy〉 the coefficient is replaced by(ε′ · ε− 3ε′yεy) or 2(ε′ · ε− 3ε′zεz), respectively.
Note that for unpolarized x-rays the polarization factors in (4.3) are individually equal to
zero when a spatial average is taken.

Not surprisingly, perhaps, the termK = 1 is significantly different from the even-rank
terms, which we have just discussed. First, we note that (4.2) is proportional to the spin
moment, and so the term is zero in the paramagnetic phase. In this phase, the term can be
made non-zero by applying a magnetic field. The coefficient of 2J̄ + 1 is proportional to
the component of the orbital moment which lies along thez-axis. Lastly, we note that (4.2)
is 90◦ out of phase with the even-rank terms.

Taken together with the information given by Heidet al (1996) on the magnetic structure
of FeNb2O6, the results (4.1)–(4.3) enable one to calculate the structure factor for resonance-
enhanced Bragg diffraction. The technical headache of averaging|〈f 〉|2 with respect to
states of the polarization in the primary beam is addressed in paper I. In the remaining
part of this paper we only discuss the linear and circular dichroic signals in the attenuation
coefficient predicted for FeNb2O6.

5. Dichroic signals

Dichroic signals, derived from the attenuation coefficient, contain information on the spatial
anisotropy in the magnetic moment distribution of the absorbing atoms. As references
against which to assess this information it is useful to consider the signals for a free atom,
and the isotropic contribution to the attenuation coefficient of the crystal. A free atom
is considered in the next section, and here we start with the isotropic contribution to the
attenuation coefficient calculated with the ferrous wave function defined in section 3.

As we mentioned in section 2, the integrated intensity in the attenuation coefficient is
proportional to〈Z〉0, which is formed by averaging the amplitude factor with respect to
states of the polarization in the beam of x-rays incident on the sample. Of course, the
isotropic signal is independent of the polarization, and it seems to be conventional to define
this signal as theK = 0 term of 〈Z〉0 multiplied by a factor of three. From (4.1), we find
for the isotropic signal so defined the result

1

15
〈R〉2

{
4(2J̄ + 1)± 1

2

[
(g0− 2)〈S2

z 〉 +
1

2
(gy − 2)(S(S + 1)− 〈S2

z 〉)
]}
. (5.1)

One practical use of the isotropic signal is to normalize the dichroic signals, to which we
now turn our attention.

The dichroic signals are defined to be the differences in〈Z〉0 for equal and opposite
values of the polarization in the primary beam of x-rays. To describe the polarization
we use a Stokes vector,P . At a synchrotron source of radiation it is sufficient to use
P = (0, P2, P3) whereP 2

2 + P 2
3 6 1. We adopt the convention used by Lovesey and

Collins (1996), in whichP2 is the mean helicity, withP2 > 0 representing right-handed
andP2 < 0 left-handed states of circular polarization, andP3 is a measure of the linear
polarization.

The linear and circular dichroic signals are taken to be

1Z(L) = 〈Z(P3)〉0− 〈Z(−P3)〉0 and 1Z(C) = 〈Z(P2)〉0− 〈Z(−P2)〉0. (5.2)

The average values of the products of polarization vectors needed to derive1Z(C) and
1Z(L) from (4.2) and (4.3) are given in paper I. We will assume that the beam of x-rays
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is parallel to thex–z plane, which contains the magnetic moments in FeNb2O6; cf. figure
1, and figure 12 in the paper by Heidet al (1996).

From (4.3) and (5.2),

1Z(L) = 1

30
〈R〉2P3

{
−(2J̄ + 1) cos2 ϕ

±
[

1

2
(gy − 2)(S(S + 1)− 〈S2

z 〉)− (g0− 2)〈S2
z 〉 sin2 ϕ

]}
. (5.3)

In this result,ϕ is the angle between thez-component of the local principal axes and the
direction of propagation of the beam of x-rays, and the angle is depicted in the left-hand
panel of figure 1.

Figure 1. The figure depicts the arrangements of the applied magnetic field, denoted byH, the
x-ray beam and thez-components of the two sets of local principal axes. All of the vectors lie
in the plane defined by the crystala- andc-axes. The left-hand panel describes a field applied
along thec-axis, and the right-hand panel describes a field applied along thea-axis. The spin
configurations associated with the two panels areCxFz for H ‖ c, andFxCz for H ‖ a.

The total signal from a crystal is (5.3) plus the corresponding signal from the second,
non-equivalent ferrous atom. The second signal is derived from (5.3) by takingϕ to have
the valueϕ − 2φ. If the strong external field is applied along thec-axis of the crystal, the
value to be given toφ is 65.9◦, and if it is applied along thea-axis, the appropriate value
is 24.1◦. The two cases are illustrated in the two panels in figure 1, and figure 14 in the
paper by Heidet al (1996) contains isometric drawings of the spin configurations. The
quoted values ofφ are expected to be good estimates when the field strengths just exceed
the critical values required to induce changes in the spin configurations away from the fully
compensated antiferromagnetic configuration. For weaker fields the appropriate value ofφ

is 90◦, and the linear dichroic signals from the two non-equivalent atoms are equal. In this
instance, and forϕ = 90◦, the sum of the signals from the L2 and L3 absorption edges is
zero, while the contribution to the difference in the two signals which is proportional to
g0− 2 achieves its maximum value. The variation of1Z(L) with the angleϕ can be used
to separately measuregy − 2 andg0− 2.

Deep in the paramagnetic phase and in the absence of a magnetic field〈S2
z 〉 = S(S+1)/3,

to a good approximation. In this instance, all ferrous atoms are equivalent and one replaces
cos2 ϕ and sin2 ϕ by their average values of12.

The circular dichroic signal defined in (5.2) is derived from the result (4.2), and one
finds

1Z(C) = − 2

15
〈R〉2〈Sz〉P2 cosϕ

{
1

4
(g0− 2)(2J̄ + 1)± 5

6

[
1− 3

20
(gy − 2)

]}
. (5.4)

Clearly, the signal is zero if the primary beam contains no circular polarization, or if the
propagation of the beam is at right angles to thez-component of the local principal axes.



4268 S W Lovesey and H Grimmer

The signal from the second, non-equivalent atom is obtained from (5.4) by replacing
ϕ by the angleϕ − 2φ. If the spin configuration is a fully compensated antiferromagnetic
arrangement, described by the choiceφ = 90◦, the total signal from the crystal is zero. In
the presence of a strong magnetic field, such thatφ 6= 90◦, the total signal is different from
zero. Looking at (5.4) we see the coefficient of 2J̄ + 1 is proportional tog0 − 2. Hence,
if the multiplying factors are known, the total signal from the L2 and L3 absorption edges
directly gives a measure ofg0− 2, i.e. the orbital magnetic moment in the direction of the
z-component of the local principal axes.

6. Free-atom signals

To help appreciate the effect of the local environments on the dichroic signals from the
ferrous atoms in FeNb2O6, which are modelled by the wave function defined in section 3,
we give here the corresponding signals predicted for a free ferrous atom. In this instance,
the state of the atom is completely specified by the quantum numbersSLJ , and for 3d6 the
values obtained by application of Hund’s rules areS = L = 2 andJ = 4. The Racah unit
tensors for this state are listed in paper III.

In place of (5.1) we get for a free atom an isotropic signal:

1

15
〈R〉2{4(2J̄ + 1)± 2}. (6.1)

The coefficients of 2̄J + 1 in (5.1) and (6.1) are the same. It is also interesting to note that,
if we use in (5.1)〈S2

z 〉 = 4 together with the quoted values forgy and g0, the difference
in the isotropic signals at the L2 and L3 absorption edges is slightly larger than the value
predicted by (6.1), for a free atom, and it is slightly smaller for〈S2

z 〉 = S(S + 1)/3, which
is appropriate at a temperature much in excess of the ordering temperature.

The linear and circular dichroic signals for a free ferrous atom are

1Z(L) = 1

30
〈R〉2P3 sin2 ϕ{−(2J̄ + 1)± 2} (6.2)

and

1Z(C) = − 4

15
〈R〉2P2 cosϕ

{
1

4
(2J̄ + 1)± 1

3

}
. (6.3)

In evaluating (6.2) and (6.3) we have used〈Jz〉 = 4 and〈J 2
z 〉 = 16. Comparing (5.3) and

(6.2), and (5.4) and (6.3), the effect on the signals of the spatial anisotropy of the ferrous
moment in FeNb2O6 is most apparent in the linear signal. Here, the dependence of the
total signal, related to the coefficient of 2J̄ + 1, on the angleϕ is changed by the action of
the crystal field from sin2 ϕ, in the free atom, to cos2 ϕ. In section 4 we comment on the
coefficient and how it depends on the spatial symmetry of the principal orbital in the wave
function of the ferrous atom.

7. Discussion

We have used the formulation of the resonant contribution to the scattering length for x-rays
due to Lovesey and Balcar (1996, 1997) to obtain a relatively simple analytic expression
for it that is appropriate for the model of FeNb2O6 put forward by Heidet al (1996). The
expression for the scattering length is a basis for a discussion of the dichroic signals in the
attenuation coefficient and the diffraction cross-section realized at the L absorption edges of
the ferrous atoms. It has been shown that both the linear and the circular dichroic signals
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contain useful information about the anisotropic ferrous magnetic moment. Measurements
of the two signals certainly will provide a stringent test of the model.

The entire scattering length enters the cross-section for resonance-enhanced Bragg
diffraction, whereas the two dichroic signals are related to two different parts of it. Another
feature which makes diffraction a somewhat less incisive experimental tool than dichroic
signals is that the cross-section for diffraction is proportional to the square of the absolute
value of the scattering length, while the dichroic signals are simply proportional to its
imaginary part. Further discussion of the relative merits of the two experimental techniques
is given by Lovesey and Collins (1996).
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